Mechanisms implied in *Escherichia coli* removal during wastewater treatment

Araná, I., I. Garaizábal, M. Orruño, A. Bravo, C. Parada, I. Barcina

Departamento de Inmunología, Microbiología y Parasitología, Facultad de Ciencia y Tecnología, Facultad de Farmacia, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Apdo. 644, E-48080, Bilbao, Spain. (ines.arana@ehu.es)

Background

Wastewater treatment reduces environmental contamination:

- removing gross solids and mitigating its polluting effect
- reducing the number of indicator organisms and pathogens

Recycling of sludge as an organic fertilizer is environment friendly but:

- some pathogens can be present (viruses, bacteria and protozoa) (8)
- these microorganisms could be concentrated in sludge

Materials and methods

Biological model: *Escherichia coli* ABCgfp, isolated from wastewater (Crispijana WWTP) and modified to express GFP protein. This strain was indistinguishable from the parental non-tagged strain with respect to growth and behavior in sterilized wastewater (6).

Wastewater samples: from the Crispijana wastewater treatment plant (WWTP) (5).

Laboratory-scale activated-sludge unit (ASU) fed with influent and sludge from Crispijana WWTP. Similar working conditions for Crispijana WWTP and ASU.

Results and Discussion

Aim of the work

To take an approach to the main mechanisms involved in the reduction of pathogenic microorganisms during activated sludge wastewater treatment.

Bacteriophages did not affect the survival of tagged *E. coli* in wastewater.

Complex interactions between microbial populations and *E. coli* occur in presence of wastewater microbiota. Wastewater bacteria maintained their population density, while *E. coli* ABCgfp, behaving as predation non-escaping prey, was predated (2). Predation by protozoa is an important removal mechanism of bacteria in activated sludge.

Conclusions

Due to the quantitative importance of cell adhesion to sludge with respect to cell removal via predation (real elimination), the recycling of sludge can suppose a sanitary and ecological risk.